1,7-Asymmetric induction of chirality in a Mukaiyama aldol reaction using π -allyltricarbonyliron lactone complexes: highly diastereoselective synthesis of α -substituted β -hydroxy carbonyl compounds

Steven V. Ley* and Edward A. Wright

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW

Received (in Cambridge, UK) 14th March 2000, Accepted 24th March 2000 Published on the Web 9th May 2000

Silyl enol ethers derived from ethyl ketone functionalised π -allyltricarbonyliron lactone complexes undergo highly diastereoselective Mukaiyama aldol reactions with a variety of achiral aldehydes, with control of both α - and β -stereogenic centres.

Introduction

The β -hydroxy carbonyl functionality is an extremely common feature in many natural products, usually arising as a result of the polyketide biosynthetic pathway.¹ For the synthetic chemist, the aldol reaction is one of the most important methods for formation of this motif, and remains the subject of intensive research.²

Our group has recently described the use of π -allyltricarbonyliron lactone complexes in the highly diastereoselective synthesis of β -hydroxy carbonyl compounds, in a process that formally constitutes a 1,7-asymmetric induction of chirality operating through the π -allyltricarbonyliron tether.^{3,4} Here we report the results of an extension of this work, namely Mukaiyama aldol reactions of π -allyltricarbonyliron lactone complexes bearing ethyl ketone functionality. On the basis of previous work it was anticipated that silyl enol ethers derived from such complexes would adopt a preferential conformation relative to the π -allyl system,⁴ and that this would enable a diastereoselective aldol reaction to take place.

Results and discussion

 π -Allyltricarbonyliron lactone complexes 1 and 2 were readily prepared in four steps starting from (*E*)-oct-2-en-1-ol (3) and (*E*)-cinnamyl alcohol (4) respectively (Scheme 1).

Epoxidation of allylic alcohols **3** and **4** using the standard conditions of VO(acac)₂ and TBHP⁵ afforded the corresponding epoxides **5** and **6** in good yield. Swern oxidation⁶ smoothly afforded aldehydes **7** and **8** which were then homologated under Wadsworth–Horner–Emmons conditions⁷ to give epoxyenones **9** and **10** in acceptable yields. The phosphonate reagent required for this step was prepared according to the literature procedure from diethyl methylphosphonate and ethyl propanoate.⁸ With the vinyl epoxide precursors in hand reaction with diiron nonacarbonyl under standard conditions⁹ readily afforded π -allyltricarbonyliron lactone complexes **1** and **2**.

Complexes **11** and **12** were prepared as a 3:1 mixture, readily separable by column chromatography, in four steps starting from sorbic acid following our previously established protocols.¹⁰

Treatment of these complexes with trimethylsilyl triflate (TMSOTf) or triethylsilyl triflate (TESOTf) and Et_3N in DCM at 0 °C afforded the respective silyl enol ethers as a mixture of (*E*)- and (*Z*)-geometric isomers in good combined yield (Scheme 2).

Table 1Silyl enol ether preparations from ethyl ketone substituted π -allyltricarbonyliron lactone complexes

Iron complex starting material	Silyl triflate	Silyl enol ether product	(E): (Z) ratio	Yield (%)
1	TMSOTf	13	6:1	78
2	TMSOTf	14	10:1	82
11	TMSOTf	15	12:1	78
11	TESOTf	16	9:1	73
12	TMSOTf	17	8:1	75
ОН	i _0	ОН іі	_0	

Scheme 1 Reagents and conditions: (i) VO(acac)₂, 'BuOOH, 4 Å molecular sieves, DCM, 0 °C, 71% (R = Ph), 80% (R = C_5H_{11}); (ii) DMSO, (COCl)₂, DCM, 1 h, -78 °C then **5** or **6**, 1.5 h, then Et₃N, -78 °C to rt, 1.5 h, 89% (R = Ph), 92% (R = C_5H_{11}); (iii) $C_2H_5C(O)CH_2P(O)(OEt)_2$, NaH, 0 °C then **7** or **8**, 15 min, 60% (R = Ph), 65% (R = C_5H_{11}); (iv) Fe₂(CO)₉, THF, rt, 46% (R = Ph), 58% (R = C_5H_{11}).

High field NMR spectroscopic analysis indicated a high degree of selectivity in the silyl enol ether formation (Table 1), with the major isomer being assigned as (E)- on the basis of NOE experiments.

The Mukaiyama aldol reactions of these enol ethers 3,4,11 with a variety of achiral aldehydes were then investigated (Scheme 3). Prior to reaction, the enol ether mixtures were subjected to column chromatography on Florisil until the ratio of (E):(Z) isomers improved to at least 20:1.

Addition of a solution of benzaldehyde and $BF_3 \cdot Et_2O$ in DCM to a solution of (*E*)-silyl enol ether **14** in DCM at -78 °C afforded the corresponding aldol product **18** in good yield and with an excellent de of 95%. These reaction conditions were

DOI: 10.1039/b002056g

J. Chem. Soc., Perkin Trans. 1, 2000, 1677–1683 1677

Table 2 Mukaiyama aldol reaction of achiral aldehydes with π -allyl-tricarbonyliron lactone complexes

Entry	Silyl enol ether	Aldehyde	Aldol product	Yield (%) ^a	De (%) ¹
1	14	PhCHO	18	65	95
2	15	PhCHO	19	71	88
3	17	PhCHO	20	64	62
4	14	CH ₄ (CH ₂) ₅ CHO	21	80	84
5	13	CH ₄ CH=CHCHO	22	80	80
6	15	p-NO ₂ C ₆ H ₄ CHO	23	82	>95
7	14	CH ₄ (ČH ₂) ₄ C=CCHO	24	52	30
8	15	CH ₃ (CH ₂) ₄ C≡CCHO	25	56	17

^{*a*} Isolated yield after chromatography. ^{*b*} De determined from the crude mixture by 600 or 400 MHz ¹H NMR analysis after desilylation of aldol products with HF–py work-up.

13 $R^1 = H, R^2 = C_5H_{11}, R = Me$ **14** $R^1 = H, R^2 = Ph, R = Me$ **15** $R^1 = H, R^2 = CH_3, R = Me$ **16** $R^1 = H, R^2 = CH_3, R = Et$ **17** $R^1 = CH_3, R^2 = H, R = Me$

Scheme 2 Reagents and conditions: (i) R_3SiOTf (1.5 equiv.), Et_3N (1.8 equiv.), DCM, 0 °C.

Scheme 3 Reagents and conditions: (i) R^3CHO (1.5 equiv.), $BF_3 \cdot Et_2O$ (1.4 equiv.), DCM, -78 °C then Et_3N , -78 °C then HF–py, THF, rt.

then repeated with a variety of different aldehydes, and with the (E)-silyl enol ethers **14**, **15** and **17**. The results are summarised below (Table 2).

With *endo* complexes **13**, **14** and **15** the diastereoselectivities are all seen to be good to excellent, with the exception of additions to oct-2-ynal (entries 7 and 8). The decrease in diastereoselectivity in these cases may be attributed to the low steric demand of the linear side chain. Significantly, in all cases only two out of the four possible diastereoisomers were observed. Comparing entries 2 and 3 illustrates the lower diastereoselectivity for Mukaiyama aldol reactions using $exo-\pi$ allyltricarbonyliron lactone complexes compared with reactions using their *endo* counterparts; this is in agreement with previous work which has demonstrated the strong importance of the *endo* substituent in influencing the orientation of approach of the aldehyde.⁴

Fig. 1 X-Ray crystal structure of aldol product 23 (entry 6 of Table 2).

Fig. 2 Possible transition states for the aldehyde addition event.

The stereochemistry of the major diastereoisomer in these reactions was assigned by analogy with that of aldol product **23**, which was unambiguously assigned *via* single crystal X-ray structure analysis (Fig. 1).¹²

The formation of this diastereoisomer is in complete accordance with previous work.^{3,4} An explanation has been proposed for the diastereoselectivity of Mukaiyama aldol reactions of methyl ketone functionalised π -allyltricarbonyliron lactone complexes,⁴ and similar arguments may be put forward here. The aldehyde is believed to react with the s-*trans* conformation of the silyl enol ether and approaches from the opposite face to the bulky Fe(CO)₃ group. The boron trifluoride Lewis acid is non-chelating, and for steric reasons will coordinate predominantly to the aldehyde oxygen lone pair *anti* to the alkyl or aryl substituent. Six possible transition states may now be drawn (Fig. 2).

The observed product stereochemistry is consistent with a preference for transition states *Re*-1 to *Re*-3 over *Si*-1 to *Si*-3. As previously suggested, our results may be best explained using *Re*-2, with a synclinal arrangement of π -systems and minimised steric interactions. One may also envisage that in *Re*-2 steric interactions between the remote *endo* substituent and R' are minimised with this particular substrate alignment (Fig. 3).

Using standard methods of decomplexation, there is the opportunity to transform these π -allyltricarbonyliron lactone products into a variety of synthetically useful substrates, including β -, γ - and δ -lactones,¹³ (*E*,*E*)-dienes¹³ and alkenols.^{13,14} For example, silyl protected aldol product **26** was readily prepared in homochiral form, starting from enantiomerically enriched (2*R*,3*R*)-**8**.¹⁵ Complex **26** was then converted in excellent yield to (*E*,*E*)-diene **28** using standard conditions of

Fig. 3 Suggested substrate alignment leading to formation of the major diastereoisomer.

treatment with barium hydroxide followed by oxidative removal of the iron group¹⁶ (Scheme 4).

Scheme 4 Reagents and conditions: (i) $Ba(OH)_2$, MeOH, 98%; (ii) H_2O_2 , NaOH, 94%.

In conclusion, α -substituted enol ethers derived from π -allyltricarbonyliron lactones have been shown to undergo aldol reactions with a variety of achiral aldehydes under boron trifluoride activation. The products are α -methyl β -hydroxy carbonyl compounds, generated in good yields with high selectivity at both α - and β -stereogenic centres *via* remote induction through the π -allyltricarbonyliron tether. Further work is underway to demonstrate the synthetic utility of these new results in natural product synthesis.

Experimental

¹H NMR spectra were recorded in CDCl₃ on Bruker DRX-600 or DRX-400 spectrometers and are reported as follows: chemical shift, δ (ppm) [number of protons, multiplicity, coupling constant J (Hz), and assignment]. Residual protic solvent CHCl₃ ($\delta_{\rm H}$ = 7.26 ppm) was used as the internal reference. ¹³C NMR spectra were recorded in CDCl₃, at 150 or 100 MHz on Bruker DRX-600 or DRX-400 spectrometers, respectively, using the central resonance of CDCl₃ ($\delta_{\rm C} = 77.0$ ppm) as the internal reference. Infra-red spectra were recorded on Perkin-Elmer 983G or FTIR 1620 spectrometers. Mass spectra were obtained on a Kratos MS890MS, Bruker BIOAPEX 4.7 T FTICR or Micromass Q-Tof spectrometer at the Department of Chemistry, University of Cambridge, and at the EPSRC Mass Spectrometry service at Swansea. QTOF refers to the data from a quadrupolar time of flight experiment. Melting points were determined on a Reichert hot stage apparatus and are uncorrected. Optical rotation measurements are reported in $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$. Flash column chromatography was carried out using Merck Kieselgel (230-400 mesh) unless otherwise indicated. Analytical thin layer chromatography (TLC) was performed using precoated glass-backed plates (Merck Kieselgel 60 F254) and visualised by UV, acidic ammonium molybdate(IV) or acidic potassium permanganate solutions. Reactions were carried out under argon in oven-dried glassware unless otherwise stated. Et₂O and THF were distilled from sodium benzophenone ketyl, and DCM from calcium hydride. Aqueous solutions are saturated unless otherwise specified. Petrol refers

to petroleum ether bp 40–60 °C. In the synthesis of the iron lactone complexes, diironnonacarbonyl $[Fe_2(CO)_9]$ is used. This is extremely toxic, and ironpentacarbonyl is a highly toxic by-product. All work involving these species was carried out in a well-ventilated hood. Glassware was treated with bleach to destroy iron carbonyl residues before re-use. The preparations of compounds 5,¹⁰ 6,¹⁰ 7,¹⁰ 8,¹⁰ 11¹⁰ and 12¹⁰ have been previously described in the literature.

(4E,6R*,7R*)-6,7-Epoxydodec-4-en-3-one 9

Diethyl (2-oxobutyl)phosphonate (1.87 g, 8.99 mmol) was added dropwise to a stirred suspension of NaH (0.330 g of a 60% dispersion in mineral oil, prewashed with hexane (10 cm³, 8.29 mmol) in THF (40 cm³) at room temperature. The resulting solution was stirred at this temperature for a further 15 min before cooling to 0 °C. A solution of $(2S^*, 3R^*)$ -2,3-epoxyoctanal 7 (1.060 g, 7.46 mmol) in THF (5 cm³) was added dropwise over 5 min. After 5 min the reaction was quenched by the addition of NH₄Cl solution (15 cm³). The layers were separated and the aqueous layer extracted with Et₂O (3×25 cm³). The combined organic layers were dried (MgSO₄) and concentrated in vacuo. Purification by flash column chromatography (SiO₂, Et₂O-petrol 1:9) afforded *epoxy enone* 9 (0.825 g, 65%) as a colourless oil; v_{max} (film)/cm⁻¹ 2932, 2859, 2361, 1700, 1677, 1633, 1459, 1362, 1199, 1117, 977, 885 and 844; $\delta_{\rm H}$ (400 MHz) 0.86 (3 H, t, J 6.6, 3 × C(12)H), 1.05 (3 H, t, J 7.3, $3 \times C(1)H$, 1.28–1.30 (4 H, m, $2 \times C(10)H$ and $2 \times C(11)H$), 1.39-1.45 (2 H, m, 2 × C(9)H), 1.57 (2 H, apparent q, J 6.2, 2 × C(8)H), 2.53 (2 H, q, J 7.3, 2 × C(2)H), 2.84–2.87 (1 H, m, C(7)H), 3.17 (1 H, d, J 5.7, C(6)H), 6.35 (1 H, d, J 15.9, C(4)H), 6.49 (1 H, dd, J 15.9, 6.9, C(5)H); δ_C (100 MHz) 7.9 C(1), 13.9 C(12), 22.5 C(10), 25.5 C(9), 31.5 C(11), 31.9 C(8), 33.8 C(2), 56.6 C(6), 61.6 C(7), 131.0 C(4), 142.2 C(5), 199.9 C(3); m/z (EI) 196 (M⁺, 20%), 139 (10), 96 (88), 82 (100) [Found (M⁺) 196.1471. C₁₂H₂₀O₂ requires 196.1463].

(4*E*,6*R**,7*R**)-6,7-Epoxy-7-phenylhept-4-en-3-one 10

Diethyl (2-oxobutyl)phosphonate (0.672 g, 3.20 mmol) was added dropwise to a stirred suspension of NaH (0.120 g of a 60% dispersion in mineral oil, prewashed with hexane (5 cm³, 3.00 mmol) in THF (20 cm³) at room temperature. The resulting solution was stirred at this temperature for a further 15 min before cooling to 0 °C. A solution of (2R*,3R*)-2,3-epoxycinnamaldehyde (0.400 g, 2.70 mmol) in THF (2 cm³) was added dropwise to the solution over 5 min. After 15 min the reaction was quenched by the addition of NH₄Cl solution (15 cm³). The layers were separated and the aqueous layer extracted with Et_2O (3 × 20 cm³). The combined organic layers were dried (MgSO₄) and concentrated in vacuo. Purification by flash column chromatography (SiO₂, Et₂O-petrol, gradient $1:9 \rightarrow$ 1:4) afforded epoxy enone 10 (0.328 g, 60%) as a white solid (Found: C, 77.0; H, 6.97. C₁₃H₁₄O₂ requires C, 77.2; H, 6.98%); v_{max} (film)/cm⁻¹ 2980, 1696, 1629, 1458, 1119, 976, 840, 756, 698; $\delta_{\rm H}$ (600 MHz) 1.13 (3 H, t, J 7.3, 3 × C(1)H), 2.61 (2 H, q, J 7.3, 3 × C(2)H), 3.48 (1 H, dd, J 6.7, 1.3, C(6)H), 3.84 (1 H, d, J 1.3, C(7)H), 6.46 (1 H, d, J 15.9, C(4)H), 6.66 (1 H, dd, J 15.9, 6.7, C(5)H), 7.28–7.38 (5 H, m, Ph(H)); $\delta_{\rm C}$ (150 MHz) 7.9 C(1), 34.0 C(2), 60.9 C(6), 61.1 C(7), 125.5 Ph(C), 128.6 Ph(C), 128.7 Ph(C), 131.3 C(4), 136.0 Ph(C), 141.0 C(5), 199.8 C(3); m/z (QTOF) 225 (MNa⁺, 25%), 96 (55), 81 (100). This compound was also prepared in homochiral form, starting from enantiomerically enriched (2R,3R)-2,3-epoxycinnamaldehyde¹⁷ $[a]_{D}^{28}$ -143 (c 0.600, DCM).

General procedure for the preparation of π -allyltricarbonyliron lactone complexes

Degassed THF (40 cm^3) was added to diironnonacarbonyl (2.45 g, 6.7 mmol) *via* cannula and the mixture stirred vigorously in the absence of light for 20 min at room temperature after which

time the epoxy enone (3.2 mmol) was added and the reaction mixture stirred vigorously. Upon completion of reaction (typically 2–3 h), the mixture was filtered through a pad of Celite washing with Et_2O (60 cm³). Toluene (2 cm³) was added and the solution was concentrated *in vacuo*. (CARE: iron pentacarbonyl is a highly toxic and volatile by-product from the reaction.) The residue was then purified by flash column chromatography on silica gel [SiO₂, gradient petrol (to elute off the triirondodecacarbonyl) \rightarrow Et₂O–petrol] afforded, in order of elution, the *endo* complex and then the *exo* complex.

[(4E,6S*,7R*)-7-(Carbonyloxy-κC)-3-oxo-(4,5,6-η)-dodec-

4-en-6-yl]tricarbonyliron 1. Epoxy enone 9 (0.670 g, 3.94 mmol) was treated with diironnonacarbonyl (2.20 g, 6.04 mmol) according to the general procedure. Flash column chromatography afforded firstly endo complex 1 (0.830 g, 58%) as a brown viscous oil; v_{max} (film)/cm⁻¹ 2934, 2860, 2088, 2019, 1674, 1499. 1460, 1414, 1361, 1296, 1169, 1117, 1019, 924, 863, 654, 606; $\delta_{\rm H}$ (600 MHz) 0.89 (3 H, t, J 6.5, 3 \times C(12)H), 1.20 (3 H, t, J 7.3, 3 × C(1)H), 1.29–1.46 (6 H, m, 2 × C(9)H, 2 × C(10)H, $2 \times C(11)H$, 1.60 (2 H, apparent q, J 7.4, $2 \times C(8)H$), 2.75 (2 H, qd, J 7.3, 1.7, 2 × C(2)H), 3.85 (1 H, d, J 11.2, C(3)H), 4.35 (1 H, apparent q, J 6.3, C(7)H), 5.02 (1 H, dd, J 8.6, 4.6, C(6)H), 5.57 (1 H, dd, J 1.0, 8.7, C(4)H); δ_{c} (150 MHz) 7.9 C(1), 13.9 C(12), 22.4, 26.5, 31.5 C(9), C(10) and C(11), 36.5 C(2), 36.6 C(8), 65.5 C(3), 76.9 C(7), 84.3 C(6), 92.1 C(4), 199.8, 202.6, 204.8, 205.0, 207.9 CO × 5; m/z (QTOF) 387 (MNa⁺, 100%), 337 (30), 308 (70), 299 (54) [Found (MNa⁺) 387.0499. C₂₉H₃₄O₅FeNaSi requires 387.0507]. The exo diastereoisomer $[(4E, 6S^*, 7S^*) - 7 - (carbonyloxy - \kappa C) - 3 - oxo - (4, 5, 6 - \eta) - dodec - 4 - 4]$ *en-6-yl]tricarbonyliron* (0.370 g, 26%) followed; v_{max} (film)/cm⁻¹ 3049, 2933, 2861, 2088, 1686, 1660, 1496, 1461, 1407, 1344, 1301, 1226, 1166, 1113, 1000, 926, 878, 652, 605; $\delta_{\rm H}$ (600 MHz) 0.90 (3 H, t, *J* 7.2, 3 × C(12)H), 1.18 (3 H, t, *J* 7.5, 3 × C(1)H), 1.26–1.50 (6 H, m, 2 × C(9)H, 2 × C(10)H, 2 × C(11)H), 1.56– 1.74 (2 H, m, 2 × C(8)H), 2.71 (2 H, qd, J 7.5, 2.6, 2 × C(2)H), 3.75 (1 H, d, J 11.4, C(4)H), 4.05 (1 H, apparent t, J 7.6, C(7)H), 4.85 (1 H, d, J 10.4, C(6)H), 5.74 (1 H, dd, J 11.4, 8.5, C(5)H); $\delta_{\rm C}$ (150 MHz) 7.8 C(1), 13.9 C(12), 22.4, 25.0, 31.3 C(9), C(10) and C(11), 36.5 C(2), 38.0 C(8), 64.7 C(4), 74.5 C(7), 83.1 C(6), 93.8 C(5), 200.1, 202.2, 204.6, 204.9, 208.1 CO × 5; *m*/*z* (QTOF) 387 (MNa⁺, 95%), 289 (100), 261 (30) [Found (MNa⁺) 387.0495. C₂₉H₃₄O₅FeNaSi requires 387.0507].

[(3E,1R*,2S*)-1-(Carbonyloxy-κC)-5-oxo-1-phenyl-(2,3,4-η)hept-3-en-2-vl]tricarbonyliron 2. Epoxy enone 10 (0.650 g, 3.22 mmol) was treated with diironnonacarbonyl (2.45 g, 6.73 mmol) according to the general procedure. Flash column chromatography (SiO₂, Et_2O -petrol, gradient $1:20 \rightarrow 1:1$) afforded pure endo complex 2 (0.541 g, 46%) as a yellow solid (Found: C, 55.2; H, 3.81. C₁₇H₁₄O₆Fe requires C, 55.3; H, 3.84%); v_{max} (film)/cm⁻¹ 2359, 2339, 2089, 2022, 1681, 1497, 1456, 1412, 1357, 1291, 1165, 1116, 1011, 919, 798, 750, 697, 656; $\delta_{\rm H}$ (600 MHz) 1.18 (3 H, t, J 7.3, 3 × C(7)H), 2.75 (2 H, m, 2 × C(6)H), 4.01 (1 H, d, J 11.0, C(4)H), 5.25 (1 H, dd, J 8.7, 4.6, C(2)H), 5.42 (1 H, d, J 4.6, C(1)H), 5.56 (1 H, dd, J 11.0, 8.7, C(3)H), 7.29–7.36 (5 H, m, Ph(H)); δ_C (150 MHz) 7.83 C(7), 36.6 C(6), 66.0 C(4), 78.3 C(1), 84.4 C(2), 92.1 C(3), 125.9 Ph(C), 128.6 Ph(C), 128.8 Ph(C), 138.3 Ph(C), 199.6, 202.0, 204.6, 204.8, 207.8 CO × 5; *m/z* (QTOF) 393 (MNa⁺, 100%), 365 (30), 313 (80), 299 (100), 287 (50), 209 (40), 173 (20) [Found (MNa⁺) 393.0023. C₁₇H₁₄O₆FeNa requires 393.0032]. This compound was also prepared in homochiral form, starting from enantiomerically enriched epoxy enone (2R,3R)-10 $[a]_{D}^{28}$ +563 (*c* 0.620, DCM).

General procedure for the preparation of silyl enol ether complexes 13–17

For a 0.30 mmol scale reaction: Et_3N (1.6 equiv.) and trialkylsilyl triflate (1.2–1.4 equiv.) were added sequentially to a cooled (0 °C) solution of the ketone complex (1.0 equiv.) in DCM (1 cm³) and the reaction mixture was stirred at 0 °C. When the reaction was judged to be complete as indicated by TLC (typically 30 min–1 h) the reaction mixture was poured into Et_2O-H_2O (5 cm³, 1:1), the layers were separated and the aqueous fraction was further extracted with Et_2O (3 × 5 cm³). The combined organic fractions were washed with brine (5 cm³) and then dried (MgSO₄). For the determination of E:Z isomer ratios, the crude material was filtered through a short plug of Florisil washing with Et_2O (30 cm³) and the filtrate concentrated *in vacuo* followed by 600 MHz ¹H NMR spectroscopic analysis. The silyl enol ether complexes were then further purified by rapid flash column chromatography on Florisil.

 $[(2E, 4E, 6S^*, 7R^*)-7-(Carbonyloxy-\kappa C)-3-trimethylsilyloxy-$ (4,5,6-n)-dodeca-2,4-dien-6-yl]tricarbonyliron 13. Silyl enol ether 13 was prepared according to the general procedure from TMSOTf (0.107 cm³, 0.59 mmol), Et₃N (0.095 cm³, 0.68 mmol), and ethyl ketone 1 (0.166 g, 0.46 mmol). After 20 min, work-up as described and purification by flash column chromatography (Florisil, Et₂O-petrol 1:1) afforded silyl enol ether 14 (0.154 g, 78%) as a pale yellow solid; v_{max} (CDCl₃)/cm⁻¹ 2916, 2848, 2078, 2007, 1653, 1469, 1254, 1241, 1104, 1034, 960, 893, 842, 658; $\delta_{\rm H}$ (600 MHz) 0.22 (9 H, s, SiMe₃), 0.88 (3 H, t, J 6.6, $3 \times C(12)H$, 1.21–1.66 (8 H, m, $2 \times C(8)H$, $2 \times C(9)H$ C(10)H, 2 × C(11)H), 1.78 (3 H, d, J 7.4, 3 × C(1)H), 4.27 (1 H, apparent q, J 7.1, C(7)H), 4.61 (1 H, dd, J 8.3, 4.8, C(6)H), 4.74 (1 H, d, J 11.9, C(4)H), 5.01 (1 H, q, J 7.4, C(2)H), 5.06 (1 H, dd, J 11.9, 8.3, C(5)H); $\delta_{\rm C}$ (150 MHz) -0.02 SiMe₃, 11.9 C(1), 13.9 C(12), 22.5, 26.6, 31.6, 36.7 C(8), C(9), C(10), C(11), 74.9 C(4), 76.0 C(6), 77.4 C(7), 85.1 C(5), 106.1 C(2), 147.4 C(3), 204.6, 205.3, 205.9, 209.4 CO × 4; m/z (QTOF) 459 (MNa⁺, 50%), 437 (50), 375 (60), 347 (100) [Found (MNa⁺) 459.0902. C₁₉H₂₈O₆FeNaSi requires 459.0902].

[(3*E*,5*E*,1*R**,2*S**)-1-(Carbonyloxy-к*C*)-1-phenyl-5-tri-

methylsilyloxy-(2,3,4-n)-hepta-3,5-dien-2-yl]tricarbonyliron 14. Silyl enol ether 14 was prepared according to the general procedure from TMSOTf (0.256 cm³, 1.42 mmol), Et₃N (0.263 cm³, 1.90 mmol), and ethyl ketone 2 (0.350 g, 0.95 mmol). After 20 min, work-up as described and purification by flash column chromatography (Florisil, Et₂O-petrol 1:1) afforded silyl enol ether 14 (0.343 g, 82%) as a pale yellow solid; v_{max} (film)/cm⁻¹ 3035, 2960, 2077, 2019, 1255, 1241, 1170, 1107, 1056, 999, 952, 917, 891, 848, 806, 752, 698, 657, 599; $\delta_{\rm H}$ (600 MHz) 0.19 (9 H, s, SiMe₃), 1.81 (3 H, d, J 7.3, 3 × C(7)H), 4.76–4.79 (1 H, m, C(2)H), 4.93 (1 H, d, J 11.6, C(4)H), 5.02 (1 H, q, J 7.3, C(6)H), 5.07 (1 H, apparent t, J 8.1, C(3)H), 5.38 (1 H, d, J 4.8, C(1)H), 7.29–7.34 (5 H, m, Ph); $\delta_{\rm C}$ (150 MHz) –0.08 SiMe₃, 11.9 C(7), 75.7 C(4), 76.2 C(2), 76.7 C(1), 85.0 C(3), 106.2 C(6), 125.8 Ph(C), 125.9 Ph(C), 128.0 Ph(C), 128.6 Ph(C), 139.5 Ph(C), 147.2 C(6), 204.3, 205.1, 205.2, 209.2 CO × 4; m/z (LSIMS) 443 (MH⁺, 18%), 359 (76), 331 (100), 241 (44), 169 (56), 141 (44) [Found (MH⁺) 443.0591. C₂₀H₂₃O₆FeSi requires 443.0608]. This compound was also prepared in homochiral form, starting from enantiomerically enriched ethyl ketone (1R, 2S)-2 $[a]_{D}^{28}$ +153 (c 0.976, DCM).

[(4*E*,6*E*,2*R*,3*S**)-2-(Carbonyloxy-κ*C*)-6-trimethylsilyloxy-

(3,4,5- η)-octa-4,6-dien-3-yl]tricarbonyliron 15. Silyl enol ether 15 was prepared according to the general procedure from TMSOTf (0.120 cm³, 0.61 mmol), Et₃N (0.105 cm³, 0.75 mmol) and ethyl ketone 11 (0.062 g, 0.20 mmol). After 1 h, work-up as described followed by purification by flash column chromatography (Florisil, Et₂O-petrol 2:1) afforded pure *silyl enol ether* 15 (0.063 g, 78%) as a pale yellow solid; v_{max} (film)/cm⁻¹ 2971, 2360, 2340, 2074, 2015, 1662, 1363, 1374, 1274, 1242, 1107, 1085, 1039, 994, 953, 892, 849, 668, 656; $\delta_{\rm H}$ (600 MHz) 0.22 (9 H, s, SiMe₃), 1.37 (3 H, d, J 6.3, 3 × C(1)H), 1.78 (3 H, d, J 7.3, 3 × C(8)H), 4.45 (1 H, apparent quintet, J 6.3, C(2)H), 4.63 (1 H, dd, J 8.1, 4.8, C(3)H), 4.78 (1 H, d, J 11.9, C(5)H), 4.99–5.05 (2 H, m, C(4)H, C(7)H); $\delta_{\rm C}$ (150 MHz) –0.05 Si(CH₃)₃, 11.9 C(8), 21.9 C(1), 73.4 C(2), 75.0 C(5), 77.2 C(3), 84.9 C(4), 106.2 C(7), 147.4 C(6), 204.4, 205.2, 205.3, 205.3 (CO × 4); *m/z* (FAB) 381 (MH⁺, 100%), 297 (70), 269 (78), 195 (30), 145 (91), 130 (36), 107 (66) [Found (MH⁺) 381.0481. C₁₅H₂₁O₆FeSi requires 381.0457].

[(4E,6E,2R*,3S*)-2-(Carbonyloxy- κ C)-6-triethylsilyloxy-

(3,4,5-η)-octa-4,6-dien-3-yl]tricarbonyliron 16. Silyl enol ether 16 was prepared according to the general procedure from TESOTf (0.670 cm³, 0.78 mmol), Et₃N (1.25 cm³, 0.91 mmol) and ethyl ketone 11 (0.075 g, 0.26 mmol). After 1 h, work-up as described followed by purification by flash column chromatography (Florisil, Et_2O -petrol, gradient 1:4 \rightarrow 2:1) afforded pure silvl enol ether 16 (0.080 g, 73%) as a white solid; v_{max} (film)/cm⁻¹ 2960, 2071, 2013, 1661, 1630, 1456, 1414, 1362, 1275, 1248, 1188, 1106, 1085, 1049, 1004, 951, 888, 796, 772, 750, 720, 656, 634, 601; δ_H (600 MHz) 0.73 (3 H, q, J 8.0, SiCH₂CH₃), 0.97 (9 H, t, J 8.0, SiCH₂CH₃), 1.38 (3 H, d, J 6.4, 3 × C(1)H), 1.78 (3 H, d, J 7.3, 3 × C(8)H), 4.44–4.47 (1 H, m, C(2)H), 4.63 (1 H, dd, J 8.2, 4.7, C(3)H), 4.80 (1 H, d, J 12.0, C(5)H), 5.01 (1 H, q, J 7.3, C(7)H), 5.10 (1 H, dd, J 12.0, 8.3, C(4)H); δ_C (150 MHz) 4.80 SiCH₂CH₃, 6.55 SiCH₂CH₃, 11.9 C(8), 21.8 C(1), 73.4 C(2), 75.1 C(5), 76.9 C(3), 84.9 C(4), 105.6 C(7), 147.4 C(6), 204.2, 205.2, 205.9, 209.3 CO × 4; *m/z* (FAB) 423 (MH⁺, 100%), 395 (10), 339 (58), 311 (85), 159 (45), 131 (35), 115 (58) [Found MH⁺ 423.0955. C₁₈H₂₇O₆FeSi requires 423.0926].

[(4*E*,6*E*,2*S**3*S**)-2-(Carbonyloxy-κ*C*)-6-trimethylsilyloxy-

(3,4,5-n)-octa-4,6-dien-3-yl]tricarbonyliron 17. Silyl enol ether 17 was prepared according to the general procedure from TMSOTf (0.041 cm³, 0.22 mmol), Et₃N (0.045 cm³, 0.33 mmol), and ethyl ketone 12 (0.050 g, 0.16 mmol). After 20 min, workup as described and purification by flash column chromatography (Florisil, Et₂O-petrol 2:3) afforded pure *silyl enol ether* 17 (0.048 g, 75%) as a pale yellow solid; v_{max} (film)/cm⁻¹ 2961, 2081, 2014, 1656, 1450, 1378, 1353, 1308, 1272, 1254, 1241, 1178, 1108, 1092, 1048, 994, 956, 889, 841, 758, 690, 648, 600; $\delta_{\rm H}$ (600 MHz) 0.21 (9 H, s, SiMe₃), 1.37 (3 H, d, J 6.4, C(1)H), 1.75 (3 H, d, J 7.3, 3 × C(8)H), 4.29 (1 H, q, J 6.4, C(2)H), 4.40 (1 H, d, J 7.9, C(3)H), 4.64 (1 H, d, J 11.7, C(5)H), 5.01 (1 H, q, J 7.3, C(7)H), 5.16 (1 H, dd, J 11.7, 7.9, C(4)H); $\delta_{\rm C}$ (150 MHz) -0.04 SiMe₃, 11.9 C(8), 23.9 C(1), 71.2 C(2), 73.4 C(5), 74.4 C(3), 86.2 C(4), 106.5 C(7), 147.2 C(6), 204.6, 205.2, 205.6, 209.7 CO × 4; m/z (EI) 352 (M-CO, 10%), 296 (12), 196 (100), 165 (50), 73 (35) [Found (M-CO)⁺ 352.0416. C₁₄H₂₀O₅FeSi requires 352.0429].

General procedure for the Mukaiyama aldol reaction

For a 0.20 mmol scale reaction: BF₃·Et₂O (redistilled from CaH₂, 1.2 equiv.) was added to a solution of the aldehyde (purified according to literature procedures,¹⁷ 2.0 equiv.) in Et₂O (0.82 cm³) at room temperature. After 30 s, the solution was added dropwise over 1–2 min to a cooled (-78 °C) solution of the silvl enol ether (1.0 equiv.) in DCM (1.23 cm³, 2:1). The reaction mixture was maintained at this temperature until the reaction was complete as judged by TLC analysis. Upon completion of the reaction, Et₃N (3.0 equiv.) was added, the reaction mixture stirred vigorously for 1-2 min and then filtered through a pad of Celite washing the residues with DCM (100 cm³). Concentration of the filtrate in vacuo afforded a crude mixture of silylated and non-silylated aldol products. In order to provide an accurate de determination, the crude product was dissolved in THF (0.5 cm³) and then treated with HF-pyridine $(0.5 \text{ cm}^3 \text{ of a } ca. 2.25 \text{ mol } \text{dm}^{-3} \text{ stock solution in THF})$ at room temperature. After 30 min, the reaction mixture was poured into NaHCO₃ solution-Et₂O (5 cm³, 1:1). The layers were separated and the aqueous phase extracted with Et_2O (3 × 5 cm³). The combined organic extracts were poured into $CuSO_4$ solution (5 cm³), the phases separated and the aqueous phase extracted with Et_2O (3 × 5 cm³). The organic fractions were washed with brine (10 cm³), dried (MgSO₄) and concentrated *in vacuo*. Analysis of the 600 MHz ¹H NMR spectrum of the crude reaction mixture enabled determination of the diastereo-selectivity of the aldol reaction.

[(3E,1R*,2S*,6S*,7R*)-1-(Carbonyloxy-кС)-7-hydroxy-6-

methyl-5-oxo-1,7-diphenyl-(2,3,4-n)-hept-3-en-2-yl]tricarbonyliron 18. Aldol product 18 was prepared according to the general procedure from TMS enol ether 14 (0.087 g, 0.20 mmol), benzaldehyde (0.036 cm³, 0.15 mmol) and BF₃·Et₂O (0.028 cm³, 0.09 mmol). After 6 h, treatment with Et₃N (0.085 cm³, 0.60 mmol) and silvl deprotection as described afforded the crude desilylated aldol product. Purification by column chromatography (SiO₂, Et₂O-petrol, gradient $1:9\rightarrow 2:1$) afforded 18 as a white solid (0.053 g, 65%); v_{max} (film)/cm⁻¹ 3028, 2972, 2927, 2092, 2021, 1677, 1494, 1453, 1415, 1373, 1306, 1236, 1198, 1015, 920, 826, 794, 747, 699, 656, 598, 476; δ_H (600 MHz) 1.05 (3 H, d, J 7.3, C(6)Me), 3.16 (1 H, apparent quintet, J 7.3, C(6)H), 4.19 (1 H, d, J 11.3, C(4)H), 4.86 (1 H, dd, J 8.9, 3.8, C(7)H), 5.25 (1 H, dd, J 8.8, 4.8, C(2)H), 5.45 (1 H, d, J 2.3, C(1)H), 5.59 (1 H, dd, J 11.3, 8.8, C(3)H); $\delta_{\rm C}$ (150 MHz) 14.6 C(6)Me, 53.9 C(6), 66.3 C(4), 76.2 C(7), 78.2 C(1), 84.6 C(2), 92.5 C(3), 125.8 Ph(C), 126.8 Ph(C), 128.2 Ph(C), 128.6 Ph(C), 128.8 Ph(C), 138.3, 141.6 Ph(C), 199.6, 204.0, 207.2, 208.0 (CO) \times 5; *m*/*z* (FAB) 477 (MH⁺, 100%), 449 (8), 393 (9), 365 (17), 347 (25), 241 (33) [Found (MH⁺) 477.0642. C₂₄H₂₁O₇Fe requires 477.0637]. This compound was also prepared in homochiral form, starting from enantiomerically enriched silyl enol ether (1R,2S)-14 $[a]_{D}^{28}$ +295 (c 0.826, DCM).

[(4*E*,2*R**,3*S**,7*S**,8*R**)-2-(Carbonyloxy-κ*C*)-8-hydroxy-7methyl-6-oxo-8-phenyl-(3,4,5-n)-oct-4-en-3-yl]tricarbonyliron 19. Aldol product 19 was prepared according to the general procedure from TMS enol ether 15 (0.030 g, 0.08 mmol), benzaldehyde (0.016 cm³, 0.15 mmol) and BF₃·Et₂O (0.012 cm³, 0.09 mmol). After 6 h, treatment with Et_3N (0.034 cm³, 0.24 mmol) and silyl deprotection as described afforded the crude desilylated aldol product. Purification by column chromatography (SiO₂, Et₂O-petrol 3:1) afforded 19 as a white solid $(0.022 \text{ g}, 71\%); v_{\text{max}}$ (film)/cm⁻¹ 3454, 2931, 2090, 2021, 1671, 1498, 1453, 1049, 947, 703, 654; $\delta_{\rm H}$ (600 MHz) 1.07 (3 H, d, J 7.2, C(7)Me), 1.40 (3 H, d, J 6.4, $3 \times C(1)H$), 3.15 (1 H, apparent quintet, J 7.2, C(7)H), 4.04 (1 H, d, J 11.2, C(5)H), 4.55 (1 H, apparent quintet, J 6.4, C(2)H), 4.88 (1 H, d, J 8.9, C(8)H), 5.07 (1 H, dd, J 8.7, 4.6, C(3)H), 5.59 (1 H, dd, J 11.2, 8.7, C(4)H); $\delta_{\rm C}$ (150 MHz) 14.6 C(7)Me, 21.8 C(1), 53.9 C(7), 65.8 C(5), 72.8 C(2), 76.2 C(8), 85.4 C(3), 92.4 C(4), 126.8 Ph(C), 128.2 Ph(C), 128.6 Ph(C), 141.7 Ph(C), 199.7, 202.9, 204.2, 207.3, 208.1 CO × 5; *m*/*z* (FAB) 415 (MH⁺, 40%), 303 (30), 285 (31), 197 (24), 154 (100), 107 (41) [Found (MH⁺) 414.0391. C₁₉H₁₉O₇Fe requires 414.0402].

[(4*E*,2*S**,3*S**,7*S**,8*R**)-2-(Carbonyloxy-κ*C*)-8-hydroxy-7methyl-6-oxo-8-phenyl-(3,4,5-η)-oct-4-en-3-yl]tricarbonyliron **20.** Aldol product **20** was prepared according to the general procedure from TMS enol ether **17** (0.031 g, 0.079 mmol), benzaldehyde (0.016 cm³, 0.16 mmol) and BF₃·Et₂O (0.020 cm³, 0.16 mmol). After 6 h, treatment with Et₃N (0.033 cm³, 0.24 mmol) and silyl deprotection as described afforded the crude desilylated aldol product. Purification by column chromatography (SiO₂, Et₂O-petrol 2:1) afforded **20** (0.021 g, 64%) as a white solid; ν_{max} (film)/cm⁻¹ 3476, 2977, 2932, 2091, 2020, 1665, 1495, 1454, 1376, 1309, 1171, 1051, 1008, 952, 838, 768, 736, 703, 653, 604; $\delta_{\rm H}$ (600 MHz) 1.03 (3 H, d, J 7.1, C(7)Me), 1.44 (3 H, d, J 6.3, 3 × C(1)H), 2.58 (1 H, br s, OH), 3.11 (1 H, apparent quintet, J 7.8, C(7)H), 3.89 (1 H, d, J 11.1, C(5)H), 4.32 (1 H, q,

J 6.3, C(2)H), 4.83–4.86 (2 H, m, C(3)H and C(8)H), 5.75 (1 H, apparent t, J 9.6, C(4)H), 7.30–7.37 (5 H, m, Ph(H)); $\delta_{\rm C}$ (150 MHz) 14.5 C(7)Me, 24.0 C(1), 53.9 C(7), 65.1 C(5), 70.6 C(2), 76.2 C(8), 84.6 C(3), 94.0 C(4), 126.8 Ph(C), 128.2 Ph(C), 128.6 Ph(C), 141.6 Ph(C), 200.0, 202.7, 204.0, 207.3, 208.3 CO × 5; m/z (QTOF) 437 (MNa⁺, 100%), 403 (40), 381 (55), 371 (20) [Found (MNa⁺) 437.0291. C₁₉H₁₈O₇FeNa requires 437.0300].

[(3E,1R*,2S*,6S*,7R*)-1-(Carbonyloxy-κC)-7-hydroxy-6methyl-5-oxo-1-phenyl-(2,3,4-n)-tridec-3-en-2-yl]tricarbonyliron 21. Aldol product 21 was prepared according to the general procedure from TMS enol ether 14 (0.037 g, 0.081 mmol), heptanal (0.015 cm³, 0.11 mmol) and BF₃·Et₂O (0.013 cm³, 0.10 mmol). After 6 h, treatment with Et₃N (0.033 cm³, 0.24 mmol) and work-up as described afforded the crude desilylated aldol product. Purification by column chromatography (SiO₂, Et₂Opetrol 1:1) afforded **21** (0.031 g, 80%) as a colourless oil; v_{max} (film)/cm⁻¹ 2928, 2091, 2021, 1677, 1496, 1454, 1020, 698, 656, 600; $\delta_{\rm H}$ (600 MHz) 0.89 (3 H, t, J 6.3, 3 × C(13)H), 1.28 (3 H, d, J 7.3, C(6)Me), 1.34–1.59 (10 H, m, $2 \times C(8)H$, $2 \times C(9)H$, $2 \times C(10)H$, $2 \times C(11)H$ and $2 \times C(12)H$), 2.33 (1 H, d, J 6.0, OH), 2.86 (1 H, apparent quintet, J 7.1, C(6)H), 3.79 (1 H, m, C(7)H), 4.13 (1 H, d, J 11.2, C(4)H), 5.24 (1 H, dd, J 8.5, 4.7, C(2)H), 5.44 (1 H, d, J 4.5, C(1)H), 5.54 (1 H, apparent t, J 9.0, C(3)H), 7.29–7.37 (5 H, m, Ph(H); δ_{C} (150 MHz) 14.0 C(13), 14.5 C(6)Me, 22.6, 25.4, 29.2, 31.8, 34.6 C(8), C(9), C(10), C(11) and C(12), 52.4 C(6), 66.4 C(4), 73.2 C(7), 78.2 C(1), 84.4 C(2), 92.7 C(3), 125.8 Ph(C), 125.8 Ph(C), 128.6 Ph(C), 128.8 Ph(C), 138.3 Ph(C), 199.6, 202.0, 204.2 CO × 3; m/z (ES) 485 (MH⁺, 100%), 373 (34), 242 (55), 241 (57), 107 (80) [Found (MH⁺) 485.1263. C₂₄H₂₉O₇Fe requires 485.1263].

[(8*E*,13*E*,6*R**,7*S**,11*S**,12*S**)-6-(Carbonyloxy-κ*C*)-12hydroxy-11-methyl-10-oxo-(7,8,9-η)-pentadeca-8,13-dien-7-

yl]tricarbonyliron 22. Aldol product 22 was prepared according to the general procedure from TMS enol ether 13 (0.078 g, 0.17 mmol), (E)-crotonaldehyde (0.043 cm³, 0.52 mmol) and BF_3 ·Et₂O (0.043 cm³, 0.34 mmol). After 6 h, treatment with Et₃N (0.055 cm³, 0.40 mmol) and silyl deprotection as described afforded the crude desilvlated aldol product. Purification by column chromatography (SiO₂, Et₂O-petrol, gradient $1:9 \rightarrow$ 1:1) afforded aldol complex 22 (0.059 g, 80%) as a white solid; v_{max} (film)/cm⁻¹ 2916, 2848, 2360, 2092, 2025, 1670, 1462, 1067, 908, 732, 649; $\delta_{\rm H}$ (600 MHz) 0.89 (3 H, t, J 6.7, 3 × C(1)H), 1.22 (3 H, d, J 7.2, C(11)Me), 1.28–1.31 (4 H, m, $2 \times C(2)H$ and 2 × C(3)H), 1.37–1.39 (1 H, m, 1 × C(4)H), 1.43–1.48 (1 H, m, 1 × C(4)H), 1.60–1.63 (2 H, m, C(5)H), 1.72 (3 H, dd, J 6.4, 1.0, 3 × C(15)H), 2.30 (1 H, d, J 4.9, OH), 2.86 (1 H, apparent q, J 7.5, C(11)H), 3.93 (1 H, d, J 11.2, C(9)H), 4.23 (1 H, apparent q, J 5.1, C(12)H), 4.36 (1 H, apparent q, J 5.1, C(6)H), 5.01 (1 H, dd, J 8.7, 4.6, C(7)H), 5.48 (1 H, dd, J 7.5, 1.5, C(13)H), 5.54 (1 H, dd, J 11.2, 8.7, C(8)H), 5.77 (1 H, m, C(14)H); $\delta_{\rm C}$ (150 MHz) 13.9 C(1), 14.4 C(11)Me, 17.7 C(15), 22.5 C(2) or C(3), 26.9 C(4), 31.5 C(2) or C(3), 36.6 C(5), 52.1 C(11), 65.7 C(9), 74.8 C(12), 76.7 C(6), 84.3 C(7), 92.6 C(8), 129.4 C(14), 131.4 C(13), 199.8, 202.7, 204.3, 207.8, 208.1 CO \times 5; m/z (QTOF) 457 (MNa⁺, 90%), 435 (40), 401 (60), 353 (60), 345 (100), 337 (80), 305 (75) [Found (MNa⁺) 457.0941. C₂₀H₂₆O₇-FeNa requires 457.0926].

[(4*E*,2*R**,3*S**,7*S**,8*R**)-2-(Carbonyloxy-κ*C*)-8-hydroxy-7methyl-8-(4'-nitrophenyl)-6-oxo-(3,4,5-η)-oct-4-en-3-yl]tricarbonyliron 23. Aldol product 23 was prepared according to the general procedure from TMS enol ether 15 (0.080 g, 0.20 mmol), 4-nitrobenzaldehyde (0.045 g, 0.30 mmol) and BF₃· Et₂O (0.040 cm³, 0.32 mmol). After 6 h, treatment with Et₃N (0.083 cm³, 0.60 mmol) and silyl deprotection as described afforded the crude desilylated aldol product. Purification by column chromatography (SiO₂, Et₂O-petrol 3:1) afforded *aldol complex* 23 (0.077 g, 82%) as a white solid; mp 123–127 °C; v_{max} (film)/cm⁻¹ 3454 (br), 2979, 2092, 2023, 1668, 1606, 1520, 1456, 1419, 1376, 1347, 1314, 1180, 1051, 1003, 948, 912, 851, 834, 732, 703, 655, 601; $\delta_{\rm H}$ (600 MHz) 1.13 (3 H, d, *J* 7.2, C(7)Me), 1.39 (3 H, d, *J* 6.2, 3 × C(1)H), 3.07 (1 H, d, *J* 4.4, OH), 3.12 (1 H, apparent t, *J* 7.5, C(7)H), 3.96 (1 H, d, *J* 11.2, C(5)H), 4.55 (1 H, apparent t, *J* 5.4, C(2)H), 4.99 (1 H, dd, *J* 7.8, 4.6, C(8)H), 5.09 (1 H, dd, *J* 8.4, 4.4, C(3)H), 5.58 (1 H, apparent t, *J* 9.4, C(4)H), 7.55 (2 H, d, *J* 8.3, 2 × C(10)H), 8.22 (2 H, d, *J* 8.3, 2 × C(11)H); $\delta_{\rm C}$ (150 MHz) 14.7 C(7)Me, 21.8 C(1), 53.4 C(7), 65.1 C(5), 72.8 C(2), 75.2 C(8), 86.2 C(3), 92.3 C(4), 123.8 C(9), 127.7 C(10), 147.7 C(11), 149.0 C(12), 199.4 C(6), 202.5, 204.2, 206.8, 207.7 CO × 5; *m*/*z* (ES) 482 (MNa⁺, 50%), 281 (48), 265 (100) [Found (MNa⁺) 482.0157. C₁₉H₁₇NO₉FeNa requires 482.0150].

Crystal data for **23**. Empirical formula $C_{19.50}H_{18}$ ClFeO₉, M = 501.65, monoclinic, a = 11.432 (8), b = 24.740 (12), c =7.678 (4) Å, U = 2169.6 (22) Å³, T = 220 K, space group $P2_1/c$, Z = 4, $\mu = 0.869$ mm⁻¹, 7141 reflections measured, 3827 unique ($R_{int} = 0.0492$) which were used in all calculations. R1 = 0.0808, wR2 = 0.1356 (all data).[†]

[(3E,1R*,2S*,6S*,7R*)-1-(Carbonyloxy-κC)-7-hydroxy-6methyl-5-oxo-1-phenyl-(2,3,4-n)-tetradec-3-en-8-yn-2-yl]tricarbonyliron 24. Aldol product 24 was prepared according to the general procedure from TMS enol ether 14 (0.026 g, 0.057 mmol), oct-2-ynal (0.011 cm³, 0.074 mmol) and BF₃·Et₂O $(0.009 \text{ cm}^3, 0.07 \text{ mmol})$. After 6 h, treatment with Et₃N (0.100 cm³, 0.72 mmol) and silyl deprotection as described afforded the crude desilylated aldol product. Purification by column chromatography (SiO₂, Et₂O-petrol 1:1) afforded aldol com*plex* 24 (0.015 g, 52%) as a white solid; v_{max} (film)/cm⁻¹ 2933, 2093, 2023, 1677, 1497, 1455, 1013, 698, 656, 600; $\delta_{\rm H}$ (600 MHz) 0.83–0.91 (6 H, m, 3 × C(14)H and C(6)Me), 1.29–1.37 (4 H, m, $2 \times C(12)$ H and $2 \times C(13)$ H), 1.51 (2 H, apparent quintet, J 6.6, 2 × C(11)H), 2.20 (2 H, t, J 7.1, 2 × C(10)H), 2.51 (1 H, d, J 6.2, OH), 3.08 (1 H, apparent quintet, J 7.3, C(6)H), 4.11 (1 H, d, J 11.0, C(4)H), 4.59 (1 H, apparent t, J 6.8, C(7)H), 5.25 (1 H, dd, J 8.6, 4.8, C(2)H), 5.45 (1 H, d, J 4.8, C(1)H), 5.56 (1 H, dd, J 11.0, 8.6, C(3)H), 7.29–7.38 (5 H, m, Ph(H)); δ_c (150 MHz) 11.8 C(12) or C(13), 14.3 C(14), 18.6 C(10), 22.1 C(6)Me, 28.1 C(11), 31.0 C(12) or C(13), 53.0 C(6), 64.1 C(7), 65.7 C(4), 78.2 C(1), 79.0 C(8) or C(9), 84.5 C(2), 87.4 C(8) or C(9), 92.6 C(3), 125.8, 128.6, 128.7, 128.8, 138.2 Ph(C) × 5, 199.4, 201.9, 203.9, 206.2, 206.8, CO × 5; *m*/*z* (QTOF) 517 (MNa⁺, 30%), 419 (20), 405 (20) [Found (MNa⁺) 517.0196. C₂₅H₂₆O₇FeNa requires 517.0926].

[(4*E*,2*R**,3*S**,7*S**,8*R**)-2-(Carbonyloxy-к*C*)-8-hydroxy-7methyl-6-oxo-(3,4,5-n)-pentadec-4-en-9-yn-3-yl]tricarbonyliron 25. Complex 25 was prepared according to the general procedure from TMS enol ether 15 (0.016 g, 0.04 mmol), oct-2-ynal $(0.009 \text{ cm}^3, 0.07 \text{ mmol})$ and BF₃·Et₂O $(0.007 \text{ cm}^3, 0.06 \text{ mmol})$. After 6 h, treatment with Et₃N (0.050 cm³, 0.36 mmol) and work-up as described afforded the crude desilylated aldol products. Purification by column chromatography (SiO₂, Et₂Opetrol, gradient $1:9 \rightarrow 1:1$) afforded aldol complex 25 (0.010 g, 56%) as a white solid; v_{max} (film)/cm⁻¹ 2928, 2090, 2019, 1671, 1498, 1456, 1049, 654; $\delta_{\rm H}$ (600 MHz) 0.90 (3 H, t, J 7.1, 3 × C(15)H), 1.19–1.53 (12 H, m, including 1.36 [3 H, d, J 7.3, C(7)Me] and 1.39 [3 H, d, J 6.4, $3 \times C(1)H$] $2 \times C(12)H$, $2 \times C(13)H$ and $2 \times C(14)H$, 2.20 (2 H, td, J 7.2, 1.9, 2 × C(11)H), 2.53 (1 H, d, J 6.4, OH), 3.06 (1 H, apparent quintet, J 7.3, C(7)H), 3.96 (1 H, d, J 11.2, C(5)H), 4.53-4.56 (1 H, m, C(2)H), 4.59 (1 H, apparent t, J 6.4, C(8)H), 5.06 (1 H, dd, J 8.8, 4.7, C(3)H), 5.55 (1 H, dd, J 11.2, 8.8, C(4)H); δ_C (150 MHz) 13.9 C(15), 14.4 C(7)Me, 18.6 C(11), 21.8 C(1), 22.1,

[†] CCDC reference number 207/421. See http://www.rsc.org/suppdata/ p1/b0/b002056g/ for crystallographic files in .cif format.

28.2, 31.0 C(12), C(13), C(14), 53.0 C(7), 64.2 C(8), 65.2 C(5), 72.8 C(2), 79.0 C(9) or C(10), 85.6 C(3), 87.4 C(9) or C(10), 92.4 C(4), 199.5, 202.5, 204.1, 206.3, 207.9 CO × 5; m/z (QTOF) 455 (MNa⁺, 20%), 413 (52), 343 (55), 287 (32) [Found (MNa⁺) 455.0756. C₂₀H₂₄O₇FeNa requires 455.0764].

[(3E,1R,2S,6S,7R)-1-(Carbonyloxy-кС)-6-methyl-5-oxo-1,7diphenyl-7-triethylsilyl-(2,3,4-η)-hept-2-en-2-yl]tricarbonyliron 26. Et₃N (0.018 cm³, 0.13 mmol) and TESCI (0.021 cm³, 0.12 mmol) were added sequentially to a solution of homochiral aldol complex (1R,2S,6S,7R)-18 (0.038 g, 0.080 mmol) and imidazole (1 crystal) in DCM (1 cm³) at room temperature. After 1 hour, the mixture was diluted with Et₂O (5 cm³), successively washed with water (5 cm³) and brine (5 cm³), dried (MgSO₄) and concentrated in vacuo. Purification by flash column chromatography (SiO₂, Et₂O-petrol 1:4) afforded silvl ether 26 as a colourless oil (0.050 g, 98%) $[a]_{D}^{28}$ 204 (c 0.100, DCM); v_{max} (film)/cm⁻¹ 3030, 2954, 2911, 2876, 2091, 2023, 1682, 1455, 1084, 1070, 1009, 820, 741, 699, 656; $\delta_{\rm H}$ (600 MHz) 0.60 (6 H, q, J 7.8, SiCH₂CH₃), 0.93 (9 H, t, J 7.8, SiCH₂CH₃), 0.98 (3 H, d, J 8.0, C(6)Me), 3.07 (1 H, apparent quintet, J 7.3, C(6)H), 4.12 (1 H, d, J 11.4, C(4)H), 4.89 (1 H, d, J 8.8, C(7)H), 5.24 (1 H, dd, J 8.7, 4.7, C(2)H), 5.46 (1 H, d, J 4.7, C(1)H), 5.57 (1 H, dd, J 11.4, 8.7, C(3)H), 7.27–7.30 (10 H, m, Ph(H)); δ_C (150 MHz) 4.7 SiCH₂CH₃, 6.4 SiCH₂CH₃, 14.3 C(6)Me, 55.3 C(6), 69.3 C(4), 76.2 C(7), 78.2 C(2), 84.1 C(1), 92.5 C(3), 125.7 Ph(C), 126.7 Ph(C), 127.1 Ph(C), 127.9 Ph(C), 128.2 Ph(C), 128.5 Ph(C), 128.8 Ph(C), 138.4 Ph(C), 142.2 Ph(C), 146.9 Ph(C), 200.0, 202.3, 204.3, 205.1, 208.0, CO × 5; m/z (ES) 591 (MH⁺, 37%), 479 (75), 341 (35), 221 (100), 157 (75) [Found (MH⁺) 591.1502. C₃₀H₃₅O₇FeSi requires 591.1501].

[(2Z,1R,4S,6S,7R)-6-Methyl-5-oxo-1,7-diphenyl-7-triethylsilyloxy-(1,2,3,4-n)-hept-2,4-ene-1,4-diyl]tricarbonyliron 27. $Ba(OH)_2$ solution (0.50 cm³) was added dropwise to a solution of silyl protected aldol complex 26 (0.020 g, 0.034 mmol) in MeOH (1 cm³) at room temperature. After 2 minutes the reaction mixture was poured into Et_2O-H_2O (10 cm³, 1:1). The layers were separated and the aqueous phase extracted with $Et_2O(3 \times 5 \text{ cm}^3)$. The combined organic fractions were washed with brine (5 cm³), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash column chromatography (SiO2, Et2Opetrol 1:9) afforded η^4 -diene complex 27 (0.018 g, 98%) as a bright yellow oil $[a]_{D}^{28}$ -39.1 (c 0.092, DCM); v_{max} (film)/cm⁻¹ 3028, 2955, 2876, 2056, 1988, 1674, 1600, 1488, 1462, 1372, 1316, 1239, 1168, 1084, 1067, 1006, 819, 744, 700, 618, 602; $\delta_{\rm H}$ (600 MHz) 0.52 (6 H, q, J 8.0, SiCH₂CH₃), 0.83 (9 H, t, J 8.0, SiCH₂CH₃), 0.93 (3 H, d, J 7.9, C(6)Me), 1.61 (1 H, d, J 7.5, C(4)H), 2.45 (1 H, d, J 8.6, C(2)H), 2.84 (1 H, apparent quintet, J 7.7, C(6)H), 4.83 (1 H, d, J 8.5, C(7)H), 5.96–6.00 (2 H, m, C(1)H and C(3)H), 7.21–7.32 (10 H, m, Ph(H)); δ_{c} (150 MHz) 4.8 SiCH₂CH₃, 6.4 SiCH₂CH₃, 14.8 C(6)Me, 52.6 C(4), 55.6 C(6), 62.1 C(2), 77.0 C(7), 82.5, 83.1 C(1) and C(3), 126.3 Ph(C), 127.0 Ph(C), 127.0 Ph(C), 128.1 Ph(C), 128.8 Ph(C), 138.9 Ph(C), 142.8 Ph(C) \times 10, 207.5 CO; m/z (QTOF) 569 (MNa⁺, 100%), 558 (30) [Found (MNa⁺) 569.1423. C₂₉H₃₄O₅-FeNaSi requires 569.1445].

Preparation of a NaOH–H₂O₂ solution

 H_2O_2 (10 cm³ of a 30% aqueous solution) was added to a stirred solution of NaOH (0.61 g, 1.53 mmol) in MeOH (15 cm³) at 0 °C. The solution was then used immediately.

(4E,6E,1R,2S)-2-Methyl-3-oxo-1,7-diphenyl-1-

triethylsilyloxyhepta-4,6-diene 28. A solution of diene complex

27 (0.016 g, 0.029 mmol) in MeOH (1 cm³) at 0 °C was treated with freshly prepared NaOH-H₂O₂ solution (vide supra) (0.5 cm³). After 5 minutes at 0 °C the reaction mixture was poured into Et_2O-H_2O (10 cm³, 1:1) and the layers separated. The aqueous layer was extracted with Et_2O (3 × 5 cm³) and the combined organic extracts washed with brine (5 cm³), dried $(MgSO_4)$ and then concentrated *in vacuo*. Purification by flash column chromatography (SiO₂, Et₂O–petrol 1:9) afforded *diene* **28** (0.011 g, 94%) as a yellow oil $[a]_{D}^{28}$ –62.9 (c 0.17, DCM); v_{max} (film)/cm⁻¹ 2954, 2359, 1658, 1586, 1453, 1068, 823, 747, 701, 652; $\delta_{\rm H}$ (600 MHz) 0.39 (6 H, apparent quintet, J 7.6, SiCH₂-CH₃), 0.76 (9 H, t, J 7.9, SiCH₂CH₃), 0.78 (3 H, d, J 7.0, C(2)Me), 3.18 (1 H, dd, J 9.1, 7.0, C(2)H), 4.76 (1 H, d, J 9.1, C(1)H), 6.43 (1 H, d, J 15.3, C(4)H), 6.93 (1 H, dd, J 15.6, 10.5, C(6)H), 7.00 (1 H, d, J 15.6, C(7)H), 7.27-7.38 and 7.48-7.50 (10 H, m, Ph(H)), 7.41 (1 H, dd, J, 15.3, 10.5, C(5)H); $\delta_{\rm C}$ (150 MHz) 4.6 SiCH₂CH₃, 6.6 SiCH₂CH₃, 14.1 C(2)Me, 52.4 C(2), 77.9 C(1), 127.0 Ph(C), 127.0 Ph(C), 127.2 Ph(C), 127.6 Ph(C), 128.1 Ph(C), 129.0 Ph(C), C(5) and C(6), 130.6 C(4), 136.2 Ph(C), 141.0 C(7), 142.2 Ph(C), 143.2 Ph(C), 203.4 CO; m/z (ES) 407 (MH⁺, 10%), 377 (15), 221 (100), 157 (45), 115 (27) [Found (MH) 407.2407. C₂₆H₃₅O₂Si requires 407.2406].

Acknowledgements

We thank the EPSRC (E. A. W.), the Isaac Newton Trust Bursary Scheme (E. A. W.), Zeneca Pharmaceuticals (E. A. W.), the B. P. Endowment (S. V. L.) and the Novartis Research Fellowship (S. V. L.) for support of this work, and Dr L. R. Cox and Dr J. M. Worrall for helpful discussions.

References

- 1 The Polyketide Metabolite, ed. D. O'Hagan, Ellis Horwood, Chichester, 1991.
- 2 For general reviews on the aldol reaction: C. H. Heathcock, B. Moon Kim, S. F. Williams, S. Masamune, I. Paterson and C. Gennari, in *Comprehensive Organic Synthesis*, ed. B. M. Trost and I. Fleming, Pergamon, Oxford, 1991, vol. 2 and references cited therein; A. S. Franklin and I. Paterson, *Contemp. Org. Synth.*, 1994, 1, 317 and references cited therein. For a recent review of asymmetric enolate methodology see: P. Arya and H. Qin, *Tetrahedron*, 2000, **56**, 917.
- 3 S. V. Ley and L. R. Cox, Chem. Commun., 1998, 227.
- 4 S. V. Ley, L. R. Cox, B. Middleton and J. M. Worrall, *Tetrahedron*, 1999, **35**, 3515.
- 5 K. B. Sharpless and R. C. Michaelson, J. Am. Chem. Soc., 1973, 95, 6136.
- 6 K. Omura and D. Swern, Tetrahedron, 1978, 34, 1651.
- 7 W. S. Wadsworth, Jr., Org. React., 1977, 25, 73.
- 8 M. Mikolajczyk and P. Balczewski, Synthesis, 1984, 691.
- 9 A. M. Horton, D. M. Hollinshead and S. V. Ley, *Tetrahedron*, 1984, 40, 1737.
- 10 S. V. Ley, L. R. Cox, G. Meek, K.-H. Metten, C. Piqué and J. M. Worrall, J. Chem. Soc., Perkin Trans. 1, 1997, 3299.
- 11 For a general review on the Mukaiyama aldol reaction: T. Mukaiyama, Org. React., 1982, 28, 203.
- 12 We gratefully acknowledge the assistance of Dr J. E. Davies of the Department of Chemistry, University of Cambridge, UK, in the determination of the single crystal X-ray structure.
- 13 S. V. Ley, L. R. Cox and G. Meek, *Chem. Rev.*, 1996, **96**, 423 and references cited therein.
- 14 S. V. Ley, S. Burckhardt, L. R. Cox and J. M. Worrall, J. Chem. Soc., Perkin Trans. 1, 2000, 211.
- 15 D. A. Evans and J. M. Williams, Tetrahedron Lett., 1988, 29, 5065.
- 16 M. Franck-Neumann, M. P. Heitz and D. Martina, *Tetrahedron Lett.*, 1983, 24, 1615.
- 17 D. D. Perrin and W. L. F. Armarego, *Purification of Laboratory Chemicals*, Pergamon, Oxford, 1997.